Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 26, No. 1 (January 2013) 1-12   

PDF URL: http://www.ije.ir/Vol26/No1/A/1-1344.pdf  
downloaded Downloaded: 545   viewed Viewed: 1976

  OPTIMIZATION OF HARDNESS STRENGTHS RESPONSE OF PLANTAIN FIBRES REINFORCED POLYESTER MATRIX COMPOSITES (PFRP) APPLYING TAGUCHI ROBUST DESIGN
 
E. C. Okafor, C. C. Ihueze and S. C. Nwigbo
 
( Received: July 15, 2012 – Accepted: November 15, 2012 )
 
 

Abstract    Volume fraction of fibres (A), aspect ratio of fibres (B) and fibres orientation (C) are considered as control factors in the determination of hardness strength, hardness strength of plantain fiber reinforced polyester composites (PFR P). These properties were determined for plantain empty fruit bunch (PEFB) and plantain pseudo stem (PPS). Hardness tests were conducted on the replicated samples of PEFB fiber reinforced polyester composite and PPS fiber reinforced polyester respectively using Archimedes principles in each case to determine the volume fraction of fibers. To obtain the optimum properties being investigated a Monsanto tensometer were used to establish the control factor levels quality characteristics needed to optimize the mechanical properties being investigated. Taguchi robust design technique was applied for the greater the better to obtain the highest signal to noise ratio (SN ratio) for the quality characteristics being investigated employing Minitab 15 software. The optimum values of the control factors are established for empty fruit bunch composites and for pseudo stem fiber composite. The empty fruit bunch fiber reinforced polyester matrix composite has the maximum hardness strength of 19.062N/mm2 and a mean design strength of 17.978N/mm2, while the pseudo stem plantain fiber reinforced matrix composite has the maximum hardness strength of 18.655 N/mm2 and a mean design strength of 18.0385N/mm2. The properties studied depend greatly on the reinforcement combinations of control factors.

 

Keywords    composite matrix, plantain fiber, Robust design, Hardness strength, Taguchi

 

چکیده   

کسر حجمی از الیاف (A)، نسبتي از الیاف (B) و جهت گیری الیاف (C) به عنوان عوامل کنترل كننده در تعیین سختی فیبر درخت موز و مواد تقویت شده مرکب پلی استر (PFR P) در نظر گرفته شده است. این خواص براي يك شاخه خالی از میوه درخت موز (PEFB) و يك شبه ساقه موز (قسمتي از تنه درخت)(PPS) تعیین شده است. آزمون‌های سختی بر روی نمونه‌های فیبر PEFB تکرار شده است و کامپوزیت تقویت شده پلی استر و الیاف PPS تقویت شده پلی استر به ترتیب برای تعیین کسر حجمی از الیاف، از اصول ارشمیدس در هر نمونه مورد استفاده قرار گرفته است. برای به دست آوردن بهترين و بالاترین سیگنال به نسبت نویز (نسبت SN) و براي تعيين خصوصيات كيفي از روش طراحی تاگوچی استفاده شده است. شاخه خالی از میوه به همراه ماتریس کامپوزیت فیبر تقویت شده پلی استر، دارای حداکثر قدرت سختی 19.062 نيوتن بر ميلي‌متر مربع مي باشد و متوسط سختي طراحی شده برابر است با 17.978 نيوتن بر ميلي متر مربع، در حالی که شبه ساقه موز تقویت شده با فیبر ماتریس کامپوزیت دارای حداکثر قدرت سختی 18.655 نيوتن بر ميلي‌متر مربع بوده و متوسط سختي طراحی شده برابر است با 18.0385 نيوتن بر ميلي‌متر مربع. خواص مورد مطالعه تا حد زیادی در ترکیب عوامل کنترل كننده تقویت بستگی دارند

References   

Abdalla, F.H., Megat, M.H., Sapuan, M.S. and Sahari, B.B. “determination of volume fraction values of filament wound glass and carbon fiber reinforced composites”, ARPN Journal of Engineering and Applied Sciences, Vol. 3, No. 4, (2008),  7-11.

2.     Binshan, S.Y., Alrik, L.S and Bank, L.C., “Mass and Volume Fraction Properties of Pultruded Glass Fiber-Reinforced Composites”, Research Report, Composites, Vol. 26 No. 10, (1995).

3.     Robinson, J.C., “Bananas and Plantains”, CAB International, UK, (1996).

4.     Food and Agriculture Organization, “Production Yearbook”, FAO, Rome, (1990).

5.     Food and Agriculture Organization, “Production Yearbook”, FAO, Rome, (2006).

6.     ISO 1172,  "Textile glass reinforced plastics-Determination of loss on ignition", 1975.

7.     ASTM D3171, "Fiber content of resin-matrix composites by matrix digestion".

8.     Green, P., "Fiber volume fraction determination of carbon-epoxy composites using an acid digestion bomb", Journal of Materials Science & Letters, Vol. 10, (1991), 1162-1164.

9.     Simon, S. and Strunk, L., "Fiber volume of resin matrix composites by density measurement", International SAMPE Symposium and Exihibition, Vol. 32, (1987), 116-22.

10.   Oksman, K., M and Selin, J.F. “Natural fibers as reinforcement in polylactic acid (PLA) composites”. Journal of Computaion S. Skrivars ci. Technology, Vol. 63, (2003), 1317-1324.

11.   Hu, H., "Squeeze casting of magnesium alloys and their composite", Journal of Meterials and Science, Vol. 33, (1998), 1579 – 1589.

12.   Taguchi, G. and Konishi, S., "Taguchi methods, orthogonal arrays and linear graphs, tools for quality engineering", Dearborn, MI: American Supplier Institute, (1987), 35 – 38.

13.   Taguchi, G., "Taguchi on robust technology development methods", New York, NY, ASME press, (1993), 1 – 40.

14.   Basavarajappa, S., Chandramohan, G. and Paulo, D.J., "Application of Taguchi techniques to study dry sliding wear behaviour of metal matrix composites", Materials and Design, Vol. 28, (2007), 1393 –1398.

15.   Bledzki, A.K., Sperber, V.E. and Faruk, O., “Natural and wood fiber reinforcement in polymers”, Rapra Review Reports, Vol. 13, No. 8, (2002), 152.

16.   Mishra, S., Mohanty, A.K., Drzal, L.T., Misra, M. and Hinrichsen, G., “A review on pineapple leaf fibers, sisal fibers and their biocomposites”, Macromol Matererials and Engineering, Vol. 289, (2004), 955–974.

17.   Arib, R.M.N., Sapuan, S.M., Ahmad, M.M.H.M., Paridah, M.T. and Khairul Zaman, H.M.D., “Mechanical properties of pineapple leaf fiber reinforced polypropylene composites”, Materials & Design, Vol. 27, (2006), 391-396.

18.   Khairiah, B. and Khairul, A.M.A., “Biocomposites from oil palm resources”, Journal of Oil Palm Research, (Special Issue-April), (2006), 103-113.

19.   Lee, S.M., Cho, D., Park, W.H., Lee, S.G., Han, S.O. and Drzal, L.T., “Novel silk/poly(butylene succinate) biocomposites: the effect of short fiber content on their mechanical and thermal properties”, Composites Science and Technology, Vol. 65, (2005), 647-657.

20.   Rozman, H.D., Saad, M.J. and Mohd Ishak, Z.A., “Flexural and impact properties of oil palm empty fruit bunch (EFB)– polypropylene composites - the effect of maleic anhydride chemical modification of EFB”, Journal of Polymer Testing, Vol. 22, (2003), 335-341.

21.   Sastra, H.Y., Siregar, J.P., Sapuan, S.M., Leman, Z. and Hamdan, M.M., “Flexural properties of Arenga pinnata fiber reinforced epoxy composites”, American Journal of Applied Sciences, (Special Issue), (2005), 21-24.

22.   Myrtha, K., Holia, O., Dawam, A.A.H. and Anung, S.,Effect of oil palm empty fruit bunch fiber on the physical and mechanical properties of fiber glass reinforced polyester resin”, Journal of Biological Sciences, Vol. 8, No. 1, (2008), 101-106.

23.   Derek, H., "An introduction to composite material", Cambridge University press, (1981).

24.   Jones, R.M., “Mechanics of composite materials”, 2nd ed., Edwards Brothers, Ann Arbor, (1998).

25.   Barbero, E.J., “Introduction to composite materials design”, Taylor & Francis, Philadelphia, USA, (1998).

26.   Acott, C., "The diving "Law-ers": A brief resume of their lives", South Pacific Underwater Medicine Society journal, Vol. 29, No. 1, (1999), 39-42.

27.   Clyne, T.W. and Hull, D., “An Introduction to Composite Materials”, 2nd ed., Cambridge University Press, Cambridge, (1996).

28.   Ross, P.J., “Taguchi technique for quality engineering”, Mc Graw-Hill, New York, (1993).

29.   Roy, R.K., “A primer on the Taguchi method”, Competitive Manufacturing Series, Van Nostrand Reinhold, New York, (1990).

30.   Ihueze, C.C., Okafor, E.C. and Ujam, A.J., “Optimization of Tensile Strengths Response of Plantain Fibers Reinforced Polyester Composites (PFRP) Applying Taguchi Robust Design”, Innovative Systems Design and Engineering, Vol. 3. No. 7, (2012), 64-76.

31.   Radharamanan, R. and Ansuj, A.P., “Quality Improvement of a Production Process using Taguchi Methods”, Proceedings of Institute of Industrial Eengineers Annual conference, Dallas, Texas, (2001), 20-22.

32.   Brindha, D., Vinodhini, D., Alarmelumangai, K. and Malathy, N.S., “Physico-Chemical Properties of Fibers From Banana Varieties After Scouring”, Indian Journal of Fundamental and Applied Life Sciences, Vol. 2, No. 1, (2012), 217 -221.

33.   Callister, W.D., “Material Science and Engineering”, 5th ed., (1999).

34.   Roy, R.K., “Design of Experiments Using the Taguchi Approach”, John Willey & Sons, Inc., New York, (2001).

35.   Casalino, G., Curcio, F., Memola, F. and Capece, M., “Investigation on Ti6Al4V laser welding using statistical and Taguchi approaches”, Journal of materials processing technology, Vol. 167, (2005), 422-428.

36.   Ozcelik, B. and Erzurumlu, T., “Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm”, Journal of materials processing technology, Vol. 171, (2006), 437–445.

37.   Srinivasa, C.V. and Bharath, K.N., “Impact and Hardness Properties of Areca Fiber-Epoxy Reinforced Composites”, Journal of Materials and Environment Science, Vol. 2, No. 4, (2011), 351-356.

38.           Sutharson, B. and Rajendran, M. and Karapagaraj, A., “Optimization of natural fiber/glass reinforced polyester hybrid composites laminate using Taguchi methodology”, International Journal of Materials and Biomaterials Applications, Vol. 2. No.1, (2012), 1-4.


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir