IJE TRANSACTIONS A: Basics Vol. 20, No. 3 (October 2007) 281-291   

PDF URL: http://www.ije.ir/Vol20/No3/A/7-862.pdf  
downloaded Downloaded: 93   viewed Viewed: 1942

M. Farzalipour Tabriz 1, P. Salehpoor 1, A. Esmaielzadeh Kandjani 1
M.R. Vaezi 1* and S.K. Sadrnezhaad 1,2

1 Materials and Energy Research Center
P.O. Box 31787-316, Karaj, Iran
2 Center of Excellence for Production of Advanced Materials
Department of Materials Science and Engineering
Sharif University of Technology, P.O. Box 11365-9466
Tehran, Iran

meisam.fa@gmail.com - pedram.salehpoor@gmail.com - mstgahmad@gmail.com
vaezi9016@yahoo.com - sadrnezh@sharif.edu

*Corresponding Author
( Received: June 18, 2007 – Accepted in Revised Form: September 13, 2007 )

Abstract    In this paper, the effects of two different Particle Size Distributions (PSD) on packingbehavior of ideal rigid spherical nanoparticles using a novel packing model based on parallelalgorithms have been reported. A mersenne twister algorithm was used to generate pseudorandomnumbers for the particles initial coordinates. Also, for this purpose a nanosized tetragonal confinedcontainer with a square floor (300 * 300 nm) were used in this work. The Andreasen and the LognormalPSDs were chosen to investigate the packing behavior in a 3D bounded region. The effects ofparticle numbers on packing behavior of these two PSDs have been investigated. Also thereproducibility and the distribution of packing factor of these PSDs were compared.


Keywords    Random Packing; Particle Size Distributions; Andreasen



1. Mayer, A. S. and Miller, C. T., “Influence of porous medium characteristics and measurement scale on pore-scale distribution of residual nonaqueous-phase liquids”, J. Contam. Hydrol., Vol. 11, (1992), 189-213.

2. Debbas, S. and Rumpf, H., “On the randomness of beds packed with spheres or irregular shaped particles”, Chem. Eng. Sci., Vol. 21, (1966), 583-607.

3. Sordelet, D. J. and Akinc, M., “Sintering of monosized, spherical yttria powders”, J. Am. Ceram. Soc., Vol. 71, (1988), 1148-1153.

4. Zheng, J., Carlson, W. B. and Reed, J. S., “Dependence of compaction efficiency in dry pressing on the particle size distribution”, J. Am. Ceram. Soc., Vol. 78, (1995), 2527-2533.

5. Zheng, J. M. and Reed, J. S., “Particle and granule parameters affecting compaction efficiency in dry pressing”, J. Am. Ceram. Soc., Vol. 71, (1988), 456-458.

6. Yokota, K., Murai, S. and Shinagawa, K., “Influence of particle size distributions with various geometrical standards derivations on slip-cast forming and sintering behavior in submicron alumina powder compacts”, J. Ceram. Soc. Japan, Vol. 114, (2006), 1138-1143.

7. Khoe, G. K., Ip, T. L. and Grace, J. R., “Rheological and fluidisation behaviour of powders of different particle size distribution”, Powder Technol., Vol. 66, (1991), 127-141.

8. Konakawa, Y. and Ishizaki, Y., “The particle size distribution for the highest relative density in a compacted body”, Powder Technol. Vol. 63, (1990), 241-246.

9. Subbanna, M., Kapur, P. C. and Pradip, P., “Role of powder size, packing, solid loading and dispersion in colloidal processing of ceramics”, Ceram. Int., Vol. 28, (2002), 401-405.

10. Mueller, G. E., “Numerically packing spheres in cylinders”, Powder Technol., Vol. 159, (2005), 105-110.

11. German, R. M., “Particle packing characteristics”, Metal Powder Industries Federation, New Jersey, USA, (1989).

12. Mutseers, S. M. P. and Rietema, K., “The effect of interparticle forces on the expansion of a homogeneous gas-fluidized bed”, Powder Technol., Vol. 18, (1977), 239-248.

13. Yu, A. B. and Standish, N., “A study of the packing of particles with mixture size distribution”, Powder Technol., Vol. 76, (1993), 113-124.

14. Yu, A. B., Standish, N. and Lu, L., “Coal agglomeration and its effect on bulk density”, Powder Technol., Vol. 82, (1995), 177-189.

15. Kong, C. M. and Lannutti, J., “Effect of agglomerate size distribution on loose packing fraction”, J. Am. Ceram. Soc., Vol. 83, (2000), 2183-2188.

16. Abreu, C. R. A., Tavares, F. W. and Castier, M., “Influence of particle shape on the packing and on the segregation of spherocylinders via monte carlo simulations”, Powder Technol., Vol. 134, (2003), 167-180.

17. Velamakanni, B. V. and Lange, F. F., “Effect of interparticle potentials and sedimentation on particle packing density of bimodal particle distributions during pressure filtration”, J. Am. Ceram. Soc., Vol. 74, (1991), 166-172.

18. Cheng, Y., Guo, S. and Hai, H., “Dynamic simulation of random packing of spherical particles”, Powder Technol., Vol. 107, (2000), 123-130.

19. Sikiric, M. D., Itoh, Y. and Poyarkov, A., “Cube packings, second moment and holes”, Eur. J. Combin., Vol. 28, (2007), 715-725.

20. Kim, J. C., Martin, D. M. and Lim, C. S., “Effect of rearrangement on simulated particle packing”, Powder Technol., Vol. 126, (2002), 211-216.

21. Mason, G. and Mellor, D. W., “Simualtion of drainage and imbibition in a random packing of equal spheres”, J. Colloid interf. Sci., Vol. 176, (1995), 214-255.

22. Pan, C., Hilpert, M., Miller, C. T., “Pore-scale modeling of saturated permeabilities in random sphere packing”, Phys. Rev. E, Vol. 64, (2001), 066702/1-066702/9.

23. Mueller, G. E., “Numerical simulation of packed beds with monosized spheres in cylindrical containers”, Powder Technol., Vol. 92, (1997), 179-183.

24. Gerogalli, G. A. and Reuter, M. A., “A particle packing algorithm for pellet design with a predetermined size distribution”, Powder Technol., Vol. 173, (2007), 189-199.

25. Jordey, W. S. and Tory, E. M., “Computer simulation of close random packing of equal spheres”, Physic. Rev. A., Vol. 32, (1985), 2347-2351.

26. Limpert, E., Stahel, W. A. and Abbt, M., “Log-normal distributions across the sciences: keys and clues”, Bio Sci., Vol. 51, (2001), 341-352.

27. Andreasen, A. H. M. and Andersen, J., “Ueber die beziehung zwischen kornabstufung und zwischenraum in produkten aus losen körnern (mit einigen experimenten)”, Kolloid-Zeitschrift, (in German), Vol. 50, (1930), 217-228.

28. Ortega, F. S., Pileggi, R. G., Sepulveda, P. and Pandolfelli, V. C., “Optimizing particle packing in powder consolidation”, Am. Ceram. Soc. Bull., (1999), 106-111.

29. Graton, L. C., Fraser, H., “Systematic Packing of Spheres with Particular Relation to Porosity and Permeability” J. Geol., Vol. 43, (1935), 785-909.

30. Millan, H., Gonzalez-Posada, M., Aguilar, M., Domınguez, J. and Cespedes, L., “On the fractal scaling of soil data. Particle-size distributions”, Geoderma, Vol. 117, (2003), 117-128.

31. Mu, F., Tan, C. and Xu, M., “Proportional difference estimate method of determining characteristic parameters of normal and Log-normal distributions”, Microelectron. Reliab., Vol. 41, (2001), 129-131.

32. Silbert, L. E., Erta, D., Grest, G. S., Hasley, T. C. and Levine, D., “Geometry of frictionless and frictional sphere packings”, Phy. Rev. E., Vol. 65, (2002), 301-304.

33. Michrafy, A., Doddes, J. and Kadiri, M., “Wall friction in the compaction of pharmaceutical powders: measurement and effect on the density distribution”, Powder Technol., Vol. 148, (2004), 53-55.

34. Nolan, G. T. and Kavanagh, P. E., “Computer simulation of random packing of hard spheres”, Powder Technol., Vol. 72, (1992), 149-155.

35. Matsumoto, M. and Nishimura, T., “Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator”, ACM Trans. Model. Comp. Simul., Vol. 8, (1998), 3-30.

36. Matsumoto, M. and Kurita, Y., “Twisted GFSR generators”, ACM Trans. Model. Comp. Simul., Vol. 2, (1992), 179-194.

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir